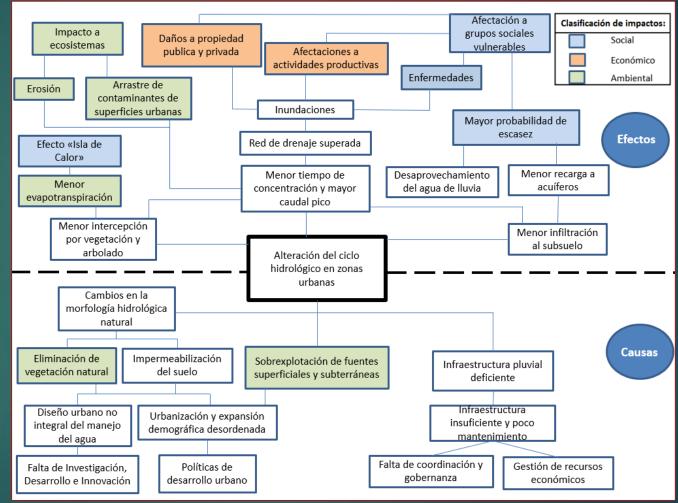
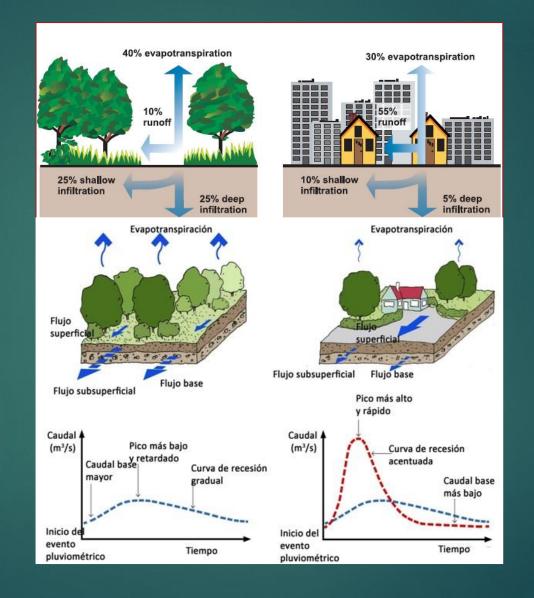


Sistemas Urbanos de Drenaje Sostenible (SUDS) para la Zona Metropolitana de Guadalajara

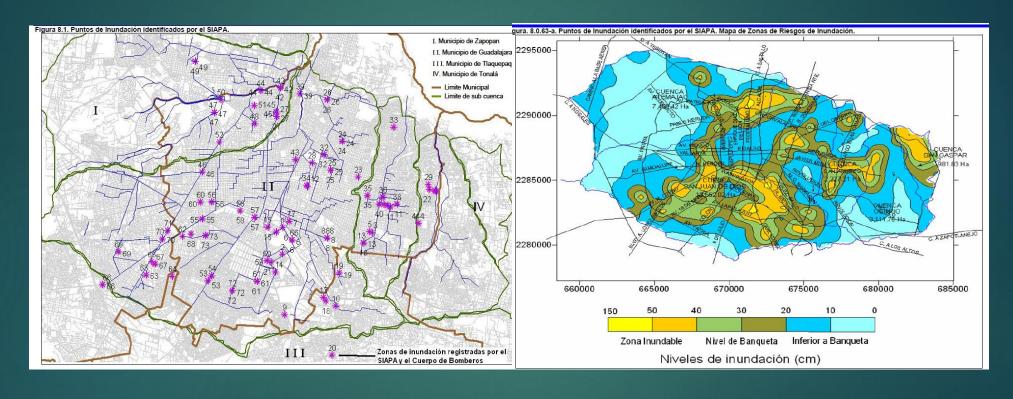
AUTORES:

MTRO. ALFREDO URÍAS ANGULO


MTRO. FRANCISCO ÁLVAREZ PARTIDA (PONENTE)


Sistemas Urbanos de Drenaje Sostenible (SUDS) para la Zona Metropolitana de Guadalajara

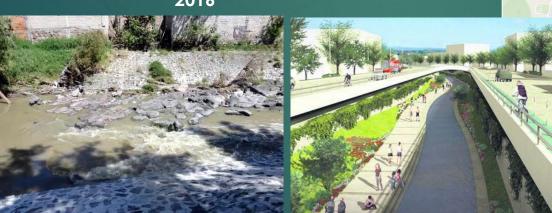
- PROBLEMÁTICA
- ANTECEDENTES LOCALES Y REGIONALES: NORMATIVA IMPACTO HIDROLÓGICO CERO, PROMIAP, ETC.
- LOS SUDS: ¿QUÉ SON, COMO FUNCIONAN, CUALES SON SUS CRITERIOS DE DISEÑO?
- CASO DE ESTUDIO: ANÁLISIS COMPARATIVO DE SISTEMA PLUVIAL CONVENCIONAL CONTRA SISTEMA CON SUDS, ANÁLISIS HIDRÁULICO-FUNCIONAL Y ECONÓMICO.
- CONCLUSIONES


PROBLEMÁTICA

PROBLEMÁTICA

PUNTOS DE INUNDACIÓN DE LA CIUDAD

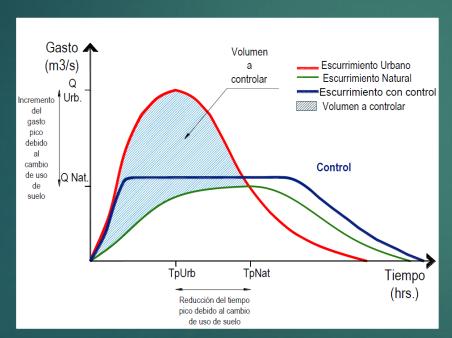
PUNTOS DE INUNDACIÓN DE LA CIUDAD



TIPOS DE OBRAS PROPUESTAS

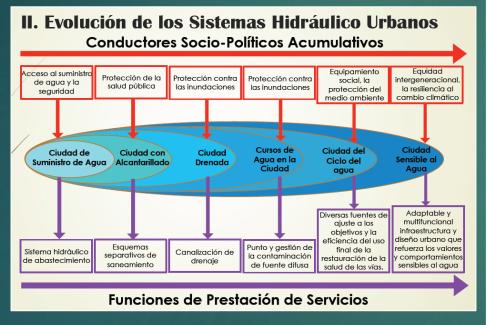
- ► CONSTRUCCIÓN DE COLECTORES MIXTOS.
- CONSTRUCCIÓN DE VASOS Y DEPÓSITOS DE REGULACIÓN (Reservorios)
- RECUPERACIÓN DE CAUCES Y ARROYOS, MEDIANTE SU AMPLIACIÓN, PROTECCIÓN Y MEJORAMIENTO DE DISEÑO URBANISTICO

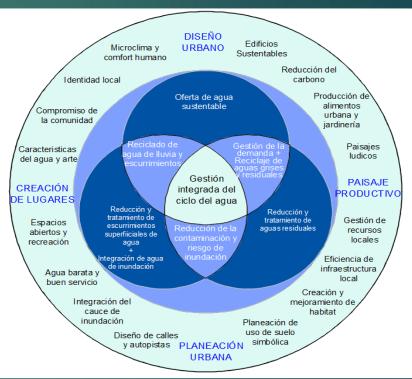
ACCIONES ACTUALES



NORMATIVA- IMPACTO HIDROLÓGICO CERO

▶ Ley Estatal de Aguas de Jalisco


<u>Art. 86-Bis – Ley Estatal de Aguas de</u> Jalisco


"Toda ocupación que genere superficies impermeables, deberá poseer un dispositivo de control del escurrimiento del agua de origen pluvial".

PRINCIPIO BÁSICO: Lograr que el escurrimiento máximo que se presente en estado urbanizado sea igual o menor que el que se presentaba en estado natural

CAMBIOS DE PARADIGMAS EN EL MANEJO DEL AGUA EN LAS CIUDADES.

EXPERIENCIA INTERNACIONAL EN MANEJO DE AGUAS PLUVIALES

Marcos conceptuales

Sustentabilidad

Gestión Integral de los Recursos Hídricos (GIRH)

Referentes conceptuales en drenaje pluvial sustentable:

- Diseño Urbano Sensible al agua (WSUD), (Australia)
- Desarrollo de bajo impacto (LID) (EE.UU)
- Infraestructura Verde (GI) (EE.UU)

Técnicas derivadas:

- Mejores Prácticas de Manejo (BMP), (EE.UU)
- Sistemas de Drenaje Urbano Sustentable (SuDS), (Reino Unido)
- Mejores prácticas de control (América Latina)

LOS SISTEMAS URBANOS DE DRENAJE SOSTENIBLES (SUDS)

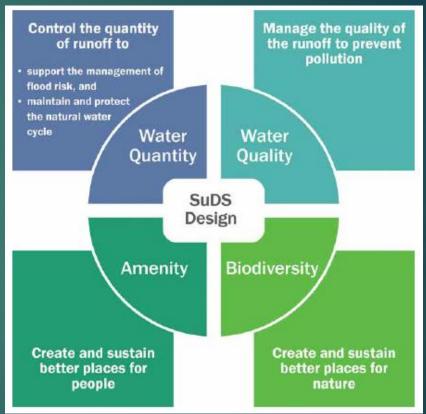
LOS SISTEMAS URBANOS DE DRENAJE SOSTENIBLES (SUDS)

IMPACTOS DE LOS SUDS

Cantidad de agua

- Asegurar que las personas y las propiedades en el sitio sean protegidas de inundarse
- Asegurar que el impacto del desarrollo no aumente el riesgo de inundación en cualquier otro punto de la cuenca.

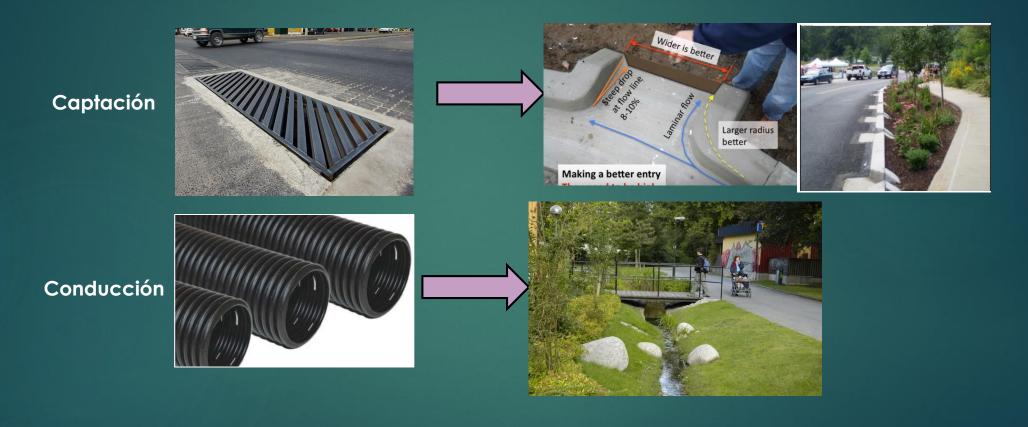
Calidad del agua


- Capturar y tratar la escorrentía de eventos pequeños y frecuentes.
- Capturar y tratar una proporción inicial de eventos largos y menos comunes.

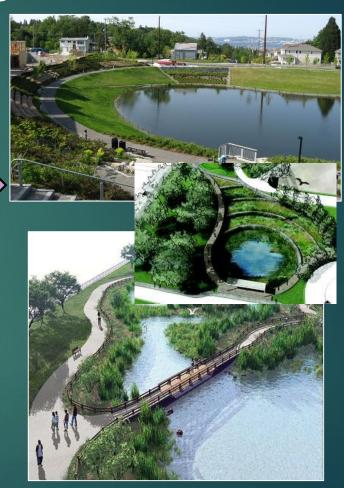
Amenidades

- Espacios seguros y saludables
- Impacto visual
- Beneficio de amenidad, estético, agradable, recreativo

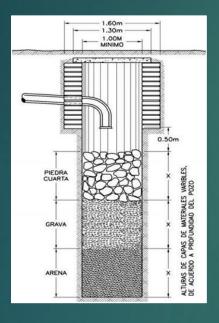
Ecológicos

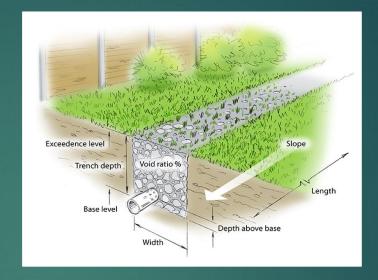

- Uso de flora nativa
- Uso de plantas no intensivas en el uso de agua para su riego
- Promover y mejorar los sistemas naturales de drenaje pluvial
- Crear o mejorar hábitats para fauna

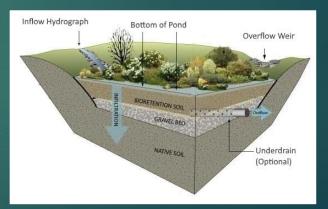

Fuente: SUDS Manual, 2015.


local

INFRAESTRUCTURA GRIS E INFRAESTRUCTURA VERDE

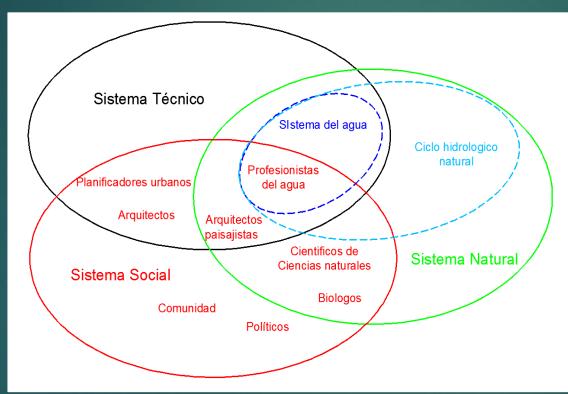



DETENCIÓN - ALMACENAMIENTO



INFILTRACIÓN

DESAPROVECHAMIENTO Y CONTAMINACIÓN



ACTORES INVOLUCRADOS

Áreas de conocimiento y disciplinas involucradas en el diseño de SUDS:

- Hidrología
- Hidráulica
- Ingeniería Civil
- Arquitectura
- Paisajismo
- Urbanismo
- Arbolaria, química.
- Biólogos
- Etc.

CASO DE ESTUDIO: Análisis comparativo de sistema pluvial convencional contra sistema con suds, análisis hidráulico-funcional y económico.

Objetivo:

 Demostrar la pertinencia y viabilidad técnicoeconómica de la implementación de algunos Sistemas Urbanos de Drenaje Sostenible (SUDS) comparando con los sistemas implementados en un predio urbanizado.

Software de modelación de proyectos pluviales xpdrainage®:

Método hidrológico del software/teórico:

> Algoritmo Muskingum-Cunge: Es una variación del método de tránsito de hidrogramas de Muskingum para ríos o reservorios

Esta basado en la ecuación de continuidad del flujo, Manning y fórmulas hidráulicas para orificios, vertedores, etc.

METODOLOGÍA BÁSICA PARA ELABORAR PROYECTOS PLUVIALES EN DESARROLLOS URBANOS

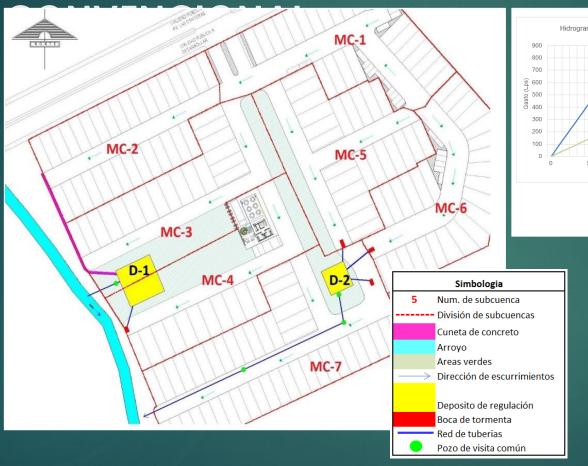
Recopilación de información de lotificación, rasantes, topografía, etc.

Identificación de áreas de aportación o cuencas y puntos de concentración.

Investigación de información pluviométrica de la zona.

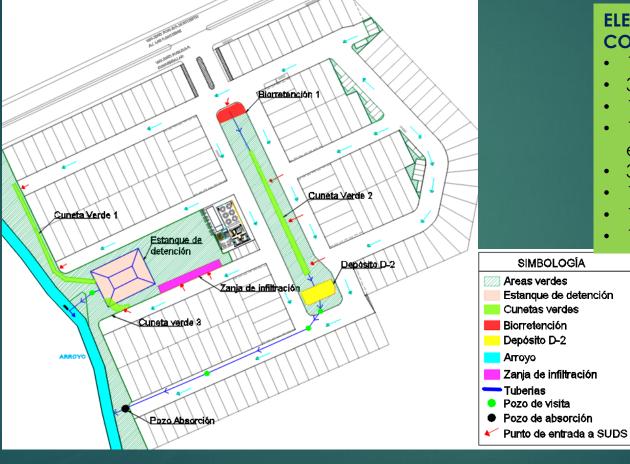
Optimización de diseño urbano y detalles constructivos

Costos, presupuestos, etc.


Calculo iterativo para dimensionamiento de sistema: diámetros, eficiencia de captación, transito del sistema de detención.

Definición preliminar de sistema: captaciones, conducción (tuberías), tanques, pozos, etc. Calculo
hidrológico:
Tiempos de
concentración,
gastos y volúmenes
de escurrimiento,
etc.

PROPUESTA DE PROYECTO PLUVIAL



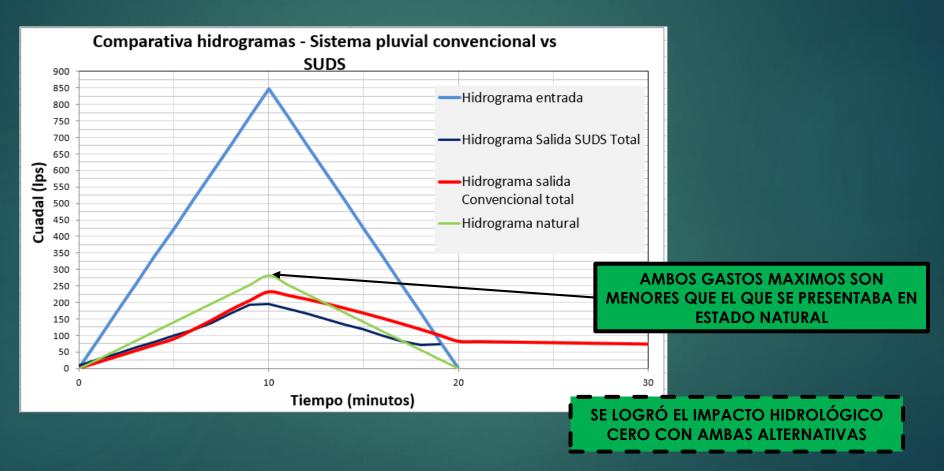
Resumen de Gasto Máxi		ximo urbanizado		
Hidrograma (Método Racional Americano) PREDIO	Periodo de retorno	10		años
Urbanizado — Natural	Intensidad de Iluvia	150.05		mm/hr
	MICROCUENCA	Ce - Coeficiente de escurrimiento	Gasto máximo (m3/s)	Gasto máx (Ips)
	MC-1	0.82	0.128	127.82
	MC-2	0.82	0.111	111.44
	MC-3	0.66	0.103	103.32
	MC-4	0.64	0.094	94.22
0 5 10 15 20 Duración (min)	MC-5	0.75	0.118	117.60
	MC-6	0.82	0.121	120.95
	MC-7	0.78	0.179	178.78
	PPERIO	0.7570	0.054	05110

Elementos del sistema pluvial:

- · 4 bocas de tormenta
- 1 cuneta o canal de concreto
- 2 tanques o depósitos de mampostería y estructura concreto
- 143 metros de Tubo PVC 10"
- 21 metros PVC 12"

PROPUESTA DE PROYECTO PLUVIAL CON SUDS

ELEMENTOS DEL SISTEMA PLUVIAL CON SUDS:


- 1 sistema de biorretención
- 3 cunetas verdes
- 1 estanque de detención
- 1 deposito de mampostería y estructura de concreto
- 34 metros de Tubo PVC 6"
- 129 metros PVC 12"
- 1 Zanja de infiltración
- 1 pozo de absorción

FASES DE LA SIMULACIÓN – 5, 10, 15 y 20 min desde el inicio del evento de lluvia (Llenado de lago de detención)

Fuente: Software xpdrainage®

RESULTADOS HIDROLÓGICOS GENERALES

COMPARATIVA DE COSTOS PARAMETRICOS Y MATERIALES DE AMBOS PROYECTOS

En los naranja el Proyecto con SUDS utilizó más

COMPARATIVA DE COSTOS PARAMETRICOS TOTALES					
ALTERNATIVA	Importe	Referencia proporcional			
Convencional	\$ 487,931.15	100%			
Con SUDS	\$ 309,544.11	63%			
		A			

Diferencia \$ 178,387.04

Tabla 13. Comparativa de costos parametricos totales entre ambas alternativas de drenaje plu

Elaboración propia.

El proyecto con SUDS es 37% más económico en relación con el convencional

COMPARATIVA EN USO DE MATERIALES Y EXCAVACIONES							
Material	Unidad	A= Alternativa convencional	B= Alternativa con SUDS	Diferencia = B- A	Proporcional = 1- (B/A) %		
Excavaciones	m3	1452.95	1686.56	233.60	+16 %		
Concreto	m3	31.49	17.46	-14.03	- 45 %		
Block 10x20x40	pzas	11740.00	4940.00	-10208.00	- 58 %		
Acero	Ton	3.02	1.68	-1.35	- 45 %		
Grava 3/4"	m3	71.20	117.84	46.64	+ 66 %		
Arena	m3	75.74	93	17.26	+ 23 %		
Malla geotextil	m2	209.96	125.93	-84.03	- 41 %		
Tubería PVC 6"	m	0.00	34.03	34.03	NA		
Tubería PVC 10"	m	142.29	128.71	-13.58	-10 %		
Tubería PVC 12"	m	20.81	0	-20.81	NA		

Tabla 14. Resumen de comparativa en uso de materiales y actividades para ambas alternativas de proyecto pluvial.

En el verde el proyecto con SUDS utilizó menos

CONCLUSIONES

- El proyecto con SUDS puede lograr los mismos requerimientos locales en cuanto a lograr el Impacto Hidrológico Cero,
- Además de cumplir con los mismos beneficios en su función hidráulica es más económico ya que requieren menos elementos y materiales para su construcción.
- En este caso de estudio se implementaron solo algunas técnicas, pero falta por evaluar otras, como la captación en viviendas, pavimentos permeables en cocheras, que pudiesen mejorar aún más el funcionamiento.
- Además de los beneficios hidráulicos y económicos, las ventajas inherentes a estos sistemas son la calidad estética y los impactos al medio ambiente
- Los resultados generales están basados en el uso del software de diseño especializado, se recomienda que sean experimentados empíricamente para tener en cuenta mayor numero de variables.

GRACIAS POR SU ATENCIÓN

Contacto:

Ing. Alfredo Urías Angulo

Correo: pe695814@lteso.mx

Mtro. Francisco Álvarez Partida

Correo: falvarez@lteso.mx